Senin, 15 April 2013

Tata Surya

 Tata Surya adalah kumpulan benda langit yang terdiri atas sebuah bintang yang disebut matahari dan semua obyek yang yang mengelilinginya. Obyek-obyek tersebut termasuk delapan buah planet yang sudah diketahui dengan orbit berbentuk elips, lima planet-planet kerdil/katai, 173 satelit-satelit alami yang telah diidentifikasi, dan jutaan benda langit (meteor, asteroid, komet) lainnya.


Tata Surya terbagi menjadi Matahari, 4 planet bagian dalam, sabuk asteroid, 4 planet bagian luar, dan di bagian terluar adalah Sabuk Kuiper dan piringan tersebar. Awan Oort diperkirakan terletak di daerah terjauh yang berjarak sekitar seribu kali di luar bagian yanng terluar.

Berdasarkan jaraknya, kedelapan planet itu ialah:
a. Merkurius (57.900.000 km)
b. Venus (108.000.000 km)
c. Bumi (150.000.000 km)
d. Mars (228.000.000 km)
e. Jupiter (779.000.000 km)
f. Saturnus (1.430.000.000 km)
g. Uranus (2.880.000.000 km)
h. Neptunus (4.500.000.000 km)
Sejak pertengahan 2008, ada 5 obyek angkasa yang diklasifikasikan sebagai planet kerdil, yang orbitnya, kecuali Ceres, berada lebih jauh dari Neptunus. Kelima planet katai itu adalah:
a. Ceres (415.000.000 km. di sabuk asteroid; dulunya diklasifikasikan sebagai planet kelima)
b. Pluto (5.906.000.000 km.; dulunya diklasifikasikan sebagai planet kesembilan)
c. Haumea (6.450.000.000 km)
d. Makemake (6.850.000.000 km)
e. Eris (10.100.000.000 km)
6 dari 8 planet dan 3 dari 5 planet kerdil itu dikelilingi oleh satelit alami, yang biasa disebut dengan "bulan" sesuai dengan Bulan atau satelit alami Bumi. Masing-masing dari planet bagian luar dikelilingi oleh cincin planet yang terdiri dari debu dan partikel lain.

A. Asal usul
Banyak hipotesis tentang asal usul Tata Surya telah dikemukakan para ahli, diantaranya :

1. Hipotesis Nebula
Dikemukakan oleh Immanuel Kant (1724-1804) tahun 1775. Kemudian disempurnakan oleh Pierre Marquis de Laplace tahun 1796. Oleh karena itu, hipotesis ini lebih dikenal dengan Hipotesis Nebula Kant-Laplace.
Pada tahap awal Tata Surya masih berupa kabut raksasa. Kabut ini terbentuk dari debu, es, dan gas yang disebut Nebula. Unsur gas sebagian besar berupa hidrogen. Karena gaya gravitasi yang dimilikinya, kabut itu menyusut dan berputar dengan arah tertentu. Akibatnya, suhu kabut memanas dan akhirnya menjadi bintang raksasa yang disebut matahari. Matahari raksasa terus menyusut dan perputarannya semakin cepat. Selanjutnya cincin-cincin gas dan es terlontar ke sekeliling matahari. Akibat gaya gravitasi, gas-gas tersebut memadat seiring dengan penurunan suhunya dan membentuk planet dalam. Dengan cara yang sama, planet luar juga terbentuk.
2. Hipotesis Planetisimal
Pertama kali dikemukakan oleh Thomas C. Chamberlain dan Forest R. Moulton pada tahun 1900. Hipotesis planetisimal mengatakan bahwa Tata Surya kita terbentuk akibat adanya bintang lain yang hampir menabrak matahari.
3. Hipotesis Pasang Surut Bintang
Dikemukakan oleh James Jean dan Herold Jaffries pada tahun 1917. Hipotesis ini sangat mirip dengan Hipotesis Planetisimal. Namun perbedaannya terletak pada jumlah awalnya matahari.
4. Hipotesis Kondensasi
Mulanya dikemukakan oleh astronom Belanda yang bernama G.P. Kuiper (1905-1973) pada tahun 1950. Tata Surya terbentuk dari bola kabut raksasa yang berputar membentuk cakram raksasa.
5. Hipotesis Bintang Kembar
Awalnya dikemukakan oleh Fred Hoyle (1915-2001) pada tahun 1956. Dahulunya Tata Surya berupa 2 bintang yang hampir sama ukurannya dan berdekatan yang salah satunya meledak meninggalkan serpihan-serpihan kecil. Serpihan itu terperangkap oleh gravitasi bintang yang tidak meledak dan mulai mengelilinginya

B. Sejarah Penemuan
5 planet terdekat ke Matahari selain Bumi (Merkurius, Venus, Mars, Yupiter dan Saturnus) telah dikenal sejak zaman dahulu karena mereka semua bisa dilihat dengan mata telanjang. Banyak bangsa di dunia ini memiliki nama sendiri untuk masing-masing planet.
Galileo Galilei (1564-1642) dengan teleskop refraktornya mampu menjadikan mata manusia "lebih tajam" dalam mengamati benda langit yang tidak bisa diamati melalui mata telanjang.Karena teleskop Galileo bisa mengamati lebih tajam, ia bisa melihat berbagai perubahan bentuk penampakan Venus, seperti Venus Sabit atau Venus Purnama sebagai akibat perubahan posisi Venus terhadap Matahari.
Penalaran Venus mengitari Matahari makin memperkuat teori heliosentris, yaitu bahwa matahari adalah pusat alam semesta, bukan Bumi, yang digagas oleh Nicolaus Copernicus (1473-1543) sebelumnya. Susunan heliosentris adalah Matahari dikelilingi oleh Merkurius hingga Saturnus.
Teleskop Galileo terus disempurnakan oleh ilmuwan lain seperti Christian Huygens (1629-1695) yang menemukan Titan, satelit Saturnus, yang berada hampir 2 kali jarak orbit Bumi-Yupiter.
Perkembangan teleskop juga diimbangi dengan perkembangan perhitungan gerak benda-benda langit dan hubungan 1 dengan yang lain melalui Johannes Kepler (1571-1630) dengan Hukum Kepler. Dan puncaknya, Sir Isaac Newton (1642-1727) dengan Hukum Gravitasi. Dengan 2 teori perhitungan inilah yang memungkinkan pencarian dan perhitungan benda-benda langit selanjutnya.
Pada 1781, William Hechell (1738-1782) menemukan Uranus. Perhitungan cermat orbit Uranus menyimpulkan bahwa planet ini ada yang mengganggu. Neptunus ditemukan pada Agustus 1846. Penemuan Neptunus ternyata tidak cukup menjelaskan gangguan orbit Uranus.
Pluto kemudian ditemukan pada 1930. Pada saat ditemukan, Pluto hanya diketahui sebagai satu-satunya obyek angkasa yang berada setelah Neptunus. Kemudian tahun 1978, Charon, satelit yang mengelilingi Pluto ditemukan, sebelumnya sempat dikira sebagai planet yang sebenarnya karena ukurannya tidak berbeda jauh dengan Pluto.
Para astronom kemudian menemukan sekitar 1.000 obyek kecil lain di belakang Neptunus (disebut obyek trans-Neptunus) yang juga mengelilingi Matahari. Di sana mungkin ada sekitar 100.000 obyek serupa yang dikenal sebagai obyek Sabuk Kuiper (Sabuk Kuiper adalah bagian dari obyek-obyek trans-Neptunus). Belasan benda langit termasuk dalam Obyek Sabuk Kuiper di antaranya Quaoar (1.250 km pada Juni 2002), Huya (750 km pada Maret 2000), Sedna (1.800 km pada Maret 2004), Orcus, Vesta, Pallas, Hygiea, Varuna, dan 2003 EL61 (1.500 km pada Mei 2004).
Penemuan 2003 EL61 cukup menghebohkan karena Obyek Sabuk Kuiper diketahui memiliki satelit pada Januari 2005 meskipun berukuran lebih kecil dari Pluto. Dan puncaknya adalah penemuan UB 313 (2.700 km pada Oktober 2003) yang diberi nama oleh penemunya Xena. Selain lebih besar dari Pluto, obyek ini juga memiliki satelit.
C. Struktur













Perbanding relatif massa planet. Jupiter adalah 71% dari total dan Saturnus 21%. Merkurius dan Mars, yang total bersama hanya kurang dari 0.1% tidak nampak dalam diagram di atas.

1. Ilustrasi skala
Komponen utama sistem Tata Surya adalah matahari, sebuah bintang deret utama kelas G2 yang mengandung 99,86 % massa dari sistem & mendominasi seluruh dengan gaya gravitasinya. Jupiter dan Saturnus, 2 komponen terbesar yang mengedari matahari, mencakup kira-kira 90 % massa selebihnya.
Hampir semua obyek-obyek besar yang mengorbit matahari terletak pada bidang edaran bumi, yang umumnya dinamai ekliptika. Semua planet terletak sangat dekat pada ekliptika, sementara komet dan obyek-obyek sabuk Kuiper biasanya memiliki beda sudut yang sangat besar dibandingkan ekliptika.
Planet dan obyek Tata Surya juga mengorbit mengelilingi matahari berlawanan dengan arah jarum jam jika dilihat dari atas kutub utara matahari, kecuali Komet Halley.
Hukum Gerakan Planet Kepler menjabarkan bahwa orbit dari obyek-obyek Tata Surya sekeliling matahari bergerak mengikuti bentuk elips dengan matahari sebagai salah satu titik fokusnya. Obyek yang berjarak lebih dekat dari matahari (sumbu semimayornya lebih kecil) memiliki tahun waktu yang lebih pendek. Pada orbit elips, jarak antara obyek dengan matahari bervariasi sepanjang tahun. Jarak terdekat antara obyek dengan matahari dinamai perihelion, sedangkan jarak terjauh dari matahari dinamai aphelion. Semua obyek Tata Surya bergerak tercepat di titik perihelion dan terlambat di titik aphelion. Orbit planet-planet bisa dibilang hampir berbentuk lingkaran, sedangkan komet, asteroid dan obyek sabuk Kuiper kebanyakan orbitnya berbentuk elips.
2. Terminologi
Tata Surya dapat dibagi menjadi 3 daerah. Tata Surya bagian dalam mencakup 4 planet kebumian dan sabuk asteroid utama. Pada daerah yang lebih jauh, Tata Surya bagian luar, terdapat 4 gas planet raksasa. Sejak ditemukannya Sabuk Kuiper, bagian terluar Tata Surya dianggap wilayah berbeda tersendiri yang meliputi semua obyek melampaui Neptunus.
Secara dinamis dan fisik, obyek yang mengorbit matahari dapat diklasifikasikan dalam 3 golongan: planet, planet kerdil, dan badan Tata Surya kecil. Planet adalah sebuah badan yang mengedari matahari dan mempunyai massa cukup besar untuk membentuk bulatan diri dan telah membersihkan orbitnya dengan menginkorporasikan semua obyek-obyek kecil di sekitarnya. Dengan definisi ini, Tata Surya memiliki 8 planet: Merkurius, Venus, Bumi, Mars, Yupiter, Saturnus, dan Neptunus. Pluto telah dilepaskan status planetnya karena tidak dapat membersihkan orbitnya dari obyek-obyek sabuk Kuiper. Planet kerdil adalah benda angkasa bukan satelit yang mengelilingi matahari, mempunyai massa yang cukup untuk bisa membentuk bulatan diri tetapi belum dapat membersihkan daerah sekitarnya. Menurut definisi ini, Tata Surya memliki 5 buah planet kerdil: Ceres, Pluto, Haumea, Makemake, dan Eris. Obyek lain yang mungkin akan diklasifikasikan sebagai planet kerdil adalah: Sedna, Orcus, dan Quaoar. Planet kerdil yang memiliki orbit di daerah trans-Neptunus biasanya disebut "plutoids". Sisa obyek-obyek lain berikutnya yang mengitari matahari adalah badan Tata Surya kecil.
Ilmuwan ahli planet menggunakan istilah gas, es, dan batu untuk mendeskripsi kelas zat yang terdapat di dalam Tata Surya. Batu digunakan untuk menamai bahan bertitik lebur tinggi (lebih besar dari 500 K), sebagai contoh silikat. Bahan batuan ini sangat umum terdapat di Tata Surya bagian dalam, merupakan komponen pembentuk utama hampir semua planet kebumian dan asteroid. Gas adalah bahan-bahan bertitik lebur rendah seperti atom hidrogen, helium, dan gas mulia, bahan-bahan ini mendominasi wilayah tengah Tata Surya, yang didominasi oleh Yupiter dan Saturnus. Sedangkan es, seperti air, metana, amonia dan karbon dioksida, memiliki titik lebur sekitar ratusan derajat kelvin. Bahan ini merupakan komponen utama dari sebagian besar satelit planet raksasa. Ia juga merupakan komponen utama Uranus dan Neptunus (yang sering disebut "es raksasa"), serta berbagai benda kecil yang terletak di dekat orbit Neptunus.
3. Zona planet













Zona Tata Surya yang meliputi, planet bagian dalam, sabuk asteroid, planet bagian luar, dan sabuk Kuiper.

Antara Mars dan Yupiter terdapat daerah yang disebut Sabuk Asteroid, kumpulan batuan metal dan mineral. Kebanyakan asteroid-asteroid hanya berdiameter beberapa kilometer, dan beberapa memiliki diameter 100 km atau lebih. Ceres, bagian dari kumpulan asteroid ini, berukuran sekitar 960 km dan dikategorikan sebagai planet kerdil. Orbit asteroid-asteroid ini sangat eliptis, bahkan beberapa menyimpangi Merkurius (Icarus) dan Uranus (Chiron).
Jarak rata-rata antara planet-planet dengan matahari bisa diperkirakan dengan menggunakan baris matematis Titus-Bode. Regularitas jarak antara jalur edaran orbit-orbit ini kemungkinan merupakan efek resonansi sisa dari awal terbentuknya Tata Surya. Tetapi Planet Neptunus tidak muncul di baris matematis Titus-Bode, yang membuat para pengamat berspekulasi bahwa Neptunus merupakan hasil tabrakan kosmis.
4. Matahari








Matahari dilihat dari spektrum sinar-X’

Matahari adalah bintang induk Tata Surya dan merupakan komponen utama sistem Tata Surya ini. Bintang ini berukuran 332.830 massa bumi. Massa yang besar ini menyebabkan kepadatan inti yang cukup besar untuk bisa mendukung kesinambungan fusi nuklir dan menyemburkan sejumlah energi yang dahsyat. Kebanyakan energi dipancarkan ke luar angkasa dalam bentuk radiasi eletromagnetik, termasuk spektrum optik.
Matahari dikategorikan dalam bintang kerdil kuning (tipe G V) berukuran tengahan, tetapi nama ini bisa menyebabkan kesalahpahaman, karena dibandingkan dengan bintang-bintang yang ada dalam galaksi Bima Sakti, matahari termasuk cukup besar dan cemerlang. Bintang diklasifikasikan dengan diagram Hertzsprung-Russell, yaitu sebuah grafik yang menggambarkan hubungan nilai luminositas sebuah bintang terhadap suhu permukaannya. Bintang yang lebih panas akan lebih cemerlang. Bintang yang mengikuti pola ini terletak pada deret utama, dan matahari letaknya persis di tengah deret ini. Tetapi, bintang-bintang yang lebih cemerlang dan lebih panas dari matahari adalah langka, sedangkan bintang-bintang yang lebih redup dan dingin adalah umum. .
5. Medium Antarplanet






Matahari secara berkesinambungan memancarkan semburan partikel bermuatan (plasma) yang dikenal sebagai angin matahari. Semburan partikel ini menyebar keluar kira-kira pada kecepatan 1,5 juta km/jam, menciptakan atmosfer tipis (heliosfer) yang merambah Tata Surya paling tidak sejauh 100 SA (heliopause). Semuanya ini disebut Medium Antarplanet. Badai geomagnetis pada permukaan matahari, seperti semburan matahari dan pengeluaran massa korona menyebabkan gangguan pada heliosfer, menciptakan cuaca ruang angkasa. Struktur terbesar dari heliosfer dinamai lembar aliran heliosfer, sebuah spiral yang terjadi karena gerak rotasi magnetis matahari terhadap medium antarplanet. Medan magnet bumi mencegah atmosfer bumi berinteraksi dengan angin matahari. Venus dan Mars yang tidak memiliki medan magnet, atmosfernya habis terkikis ke luar angkasa. Interaksi antara angin matahari dan medan magnet bumi menyebabkan terjadinya aurora, yang dapat dilihat dekat kutub magnetik bumi.
Heliosfer berperan melindungi Tata Surya dari sinar kosmik yang berasal dari luar Tata Surya. Medan magnet planet-planet menambah peran perlindungan selanjutnya. Densitas sinar kosmik pada medium antarbintang dan kekuatan medan magnet matahari mengalami perubahan pada skala waktu yang sangat panjang, sehingga derajat radiasi kosmis di dalam Tata Surya sendiri adalah bervariasi, meski tidak diketahui seberapa besar.

D. Tata Surya Bagian Dalam
Tata Surya bagian dalam adalah nama umum yang mencakup planet kebumian dan asteroid. Terutama terbuat dari silikat dan logam, obyek dari Tata Surya bagian dalam melingkup dekat dengan matahari, radius dari seluruh daerah ini lebih pendek dari jarak antara Yupiter dan Saturnus.

1. Planet-Planet Bagian Dalam





Planet-planet bagian dalam. Dari kiri ke kanan: Merkurius, Venus, Bumi, dan Mars (ukuran menurut skala)

4 planet bagian dalam / planet kebumian memiliki komposisi batuan yang padat, hampir tidak mempunyai atau tidak mempunyai bulan dan tidak mempunyai sistem cincin. Komposisi Planet-planet ini terutama adalah mineral bertitik leleh tinggi, seperti silikat yang membentuk kerak dan selubung, dan logam seperti besi dan nikel yang membentuk intinya. Venus, Bumi dan Mars memiliki atmosfer, semuanya memiliki kawah meteor & sifat-sifat permukaan tektonis seperti gunung berapi & lembah pecahan. Planet yang letaknya di antara matahari dan bumi (Merkurius dan Venus) disebut planet inferior.

2. Merkurius
Merkurius (0,4 SA) adalah planet terdekat dari matahari serta juga terkecil (0,055 massa bumi). Merkurius tidak memiliki satelit alami dan ciri geologisnya di samping kawah meteorid yang diketahui adalah (lobed ridges atau rupes), terjadi karena pengerutan pada perioda awal sejarahnya. Atmosfer Merkurius yang hampir bisa diabaikan terdiri dari atom-atom yang terlepas dari permukaannya karena semburan angin matahari. Besarnya inti besi dan tipisnya kerak Merkurius masih belum bisa dapat diterangkan. Menurut hipotesa lapisan luar planet ini terlepas setelah terjadi tabrakan raksasa, dan perkembangan ("akresi") penuhnya terhambat oleh energi awal matahari.

3. Venus
Venus (0,7 SA) berukuran mirip bumi (0,815 massa bumi). Planet ini memiliki selimut kulit silikat yang tebal dan berinti besi, atmosfernya tebal dan memiliki aktivitas geologi. Planet ini lebih kering dari bumi dan atmosfer 9 kali lebih padat dari bumi. Venus tidak memiliki satelit. Venus adalah planet terpanas dengan suhu permukaan mencapai 400 °C, kemungkinan disebabkan jumlah gas rumah kaca yang terkandung di dalam atmosfer. Aktivitas geologis Venus belum dideteksi, tetapi karena planet ini tidak memiliki medan magnet yang bisa mencegah habisnya atmosfer, diduga sumber atmosfer Venus berasal dari gunung berapi.

4. Bumi
Bumi adalah planet bagian dalam yang terbesar dan terpadat, satu-satunya yang diketahui memiliki aktivitas geologi dan satu-satunya planet yang diketahui memiliki mahluk hidup. Hidrosfer-nya yang cair adalah khas di antara planet-planet kebumian dan juga merupakan satu-satunya planet yang diobservasi memiliki lempeng tektonik. Atmosfer bumi sangat berbeda dibandingkan planet-planet lainnya, karena dipengaruhi oleh keberadaan mahluk hidup yang menghasilkan 21% oksigen. Bumi memiliki 1 satelit, bulan, satu-satunya satelit besar dari planet kebumian di dalam Tata Surya.

5. Mars
Mars (1,5 SA) berukuran lebih keci dari bumi dan Venus (0,107 massa bumi). Memiliki atmosfer tipis yang kandungan utamanya adalah karbon dioksida CO2. Permukaan Mars dipenuhi gunung berapi raksasa seperti Olympus Mounts dan lembah retakan seperti Valles Marineris, menunjukan aktivitas geologis yang terus terjadi sampai belakangan ini. Warna merahnya berasal dari warna karat tanahnya yang kaya besi. Mars mempunyai 2 satelit alami kecil (Deimos dan Phobos) yang diduga merupakan asteroid yang terjebak gravitasi Mars.

E. Tata Surya Bagian Luar
Pada bagian luar dari Tata Surya terdapat gas-gas raksasa dengan satelit-satelitnya yang berukuran planet. Banyak komet berperioda pendek termasuk Centaurs, juga berorbit di daerah ini. Badan-badan padat di daerah ini mengandung volatiles yang lebih tinggi (contoh: air, amonia, metan, yang sering disebut es dalam peristilahan ilmu keplanetan) dibandingkan planet batuan di bagian dalam Tata Surya.
1. Planet-Planet Luar








Raksasa-raksasa gas dalam Tata Surya dan Matahari, berdasarkan skala
Keempat planet luar, atau gas raksasa (yang disebut juga planet jovian), secara keseluruhan mencakup 99 persen massa yang mengorbit matahari. Jupiter dan Saturnus sebagian besar mengandung hidrogen dan helium; Uranus dan Neptunus memiliki proporsi es yang lebih besar. Para astronom mengusulkan bahwa keduanya dikategorikan sendiri sebagai raksasa es. Keempat gas raksasa ini semuanya memiliki cincin, meski hanya sistem cincin Saturnus yang dapat dilihat dengan mudah dari bumi.
2. Yupiter
Yupiter (5,2 SA), dengan 318 kali massa bumi, adalah 2,5 kali massa dari gabungan seluruh planet lainnya. Kandungan utamanya adalah hidrogen dan helium. Sumber panas di dalam Jupiter menyebabkan timbulnya beberapa ciri semi-permanen pada atmosfernya, sebagai contoh pita pita awan dan Bintik Merah Raksasa. Sejauh yang diketahui Jupiter memiliki 63 satelit. Empat yang terbesar, Ganymede, Callisto, Io, dan Europa menampakan kemiripan dengan planet kebumian, seperti gunung berapi dan inti yang panas. Ganymede, yang merupakan satelit terbesar di Tata Surya, berukuran lebih besar dari Merkurius.
3. Saturnus
Saturnus (9,5 SA) yang dikenal dengan sistem cincinnya, memiliki beberapa kesamaan dengan Jupiter, sebagai contoh komposisi atmosfernya. Meskipun Saturnus hanya sebesar 60% volume Jupiter, planet ini hanya seberat kurang dari sepertiga Jupiter atau 95 kali massa bumi, membuat planet ini sebuah planet yang paling tidak padat di Tata Surya. Saturnus memiliki 60 satelit yang diketahui sejauh ini (dan 3 yang belum dipastikan) dua di antaranya Titan dan Enceladus, menunjukan activitas geologis, meski hampir terdiri hanya dari es saja. Titan berukuran lebih besar dari Merkurius dan merupakan satu-satunya satelit di Tata Surya yang memiliki atmosfer yang cukup berarti.
4. Uranus
Uranus (19,6 SA) yang memiliki 14 kali massa bumi, adalah planet yang paling ringan di antara planet-planet luar. Planet ini memiliki kelainan ciri orbit. Uranus mengedari matahari dengan bujkuran poros 90 derajad pada ekliptika. Planet ini memiliki inti yang sangat dingin dibandingkan gas raksasa lainnya dan hanya sedikit memancarkan energi panas. Uranus memiliki 27 satelit yang diketahui, yang terbesar adalah Titania, Oberon, Umbriel, Ariel dan Miranda.
5. Neptunus
Neptunus (30 SA) meskipun sedikit lebih kecil dari Uranus, memiliki 17 kali massa bumi, sehingga membuatnya lebih padat. Planet ini memancarkan panas dari dalam tetapi tidak sebanyak Jupiter atau Saturnus. Neptunus memiliki 13 satelit yang diketahui. Yang terbesar, Triton, geologinya aktif, dan memiliki geyser nitrogen cair. Triton adalah satu-satunya satelit besar yang orbitnya terbalik arah (retrogade). Neptunus juga didampingi beberapa planet minor pada orbitnya, yang disebut Trojan Neptunus. Benda-benda ini memiliki resonansi 1:1 dengan Neptunus.
6. Daerah Trans-Neptunus








Daerah trans-Neptunus Diagram yang menunjukkan pembagian sabuk Kuiper

7. Plot Seluruh Obyek Sabuk Kuiper
Daerah yang terletak jauh melebihi Neptunus, atau daerah trans-Neptunus, sebagian besar belum dieksplorasi. Ddaerah ini sebagian besar terdiri dari dunia-dunia kecil (yang terbesar memiliki diameter seperlima bumi dan bermassa jauh lebih kecil dari bulan) dan terutama mengandung batu dan es. Daerah ini juga dikenal sebagai daerah luar Tata Surya, meskipun berbagai orang menggunakan istilah ini untuk daerah yang terletak melebihi sabuk asteroid.
8. Sabuk Kuiper
Sabuk Kuiper adalah sebuah cincin raksasa mirip dengan sabuk asteroid, tetapi komposisi utamanya adalah es. Sabuk ini terletak antara 30 dan 50 SA, dan terdiri dari badan Tata Surya kecil. Meski demikian, obyek Kuiper yang terbesar, seperti Quaoar, Varuna, dan Orcus, mungkin akan diklasifikasikan sebagai planet kerdil. Para ilmuwan memperkirakan terdapat sekitar 100.000 obyek sabuk Kuiper yang berdiameter lebih dari 50 km, tetapi diperkirakan massa total sabuk Kuiper hanya sepersepuluh massa bumi. Banyak obyek Kuiper memiliki satelit ganda dan kebanyakan memiliki orbit di luar bidang eliptika.
Sabuk Kuiper secara kasar bisa dibagi menjadi "sabuk klasik" dan resonansi. Resonansi adalah orbit yang terkait pada Neptunus (contoh: dua orbit untuk setiap tiga orbit Neptunus atau satu untuk setiap dua). Resonansi yang pertama bermula pada Neptunus sendiri. Sabuk klasik terdiri dari obyek yang tidak memiliki resonansi dengan Neptunus, dan terletak sekitar 39,4 SA sampai 47,7 SA. Anggota dari sabuk klassik diklasifikasikan sebagai cubewanos, setelah anggota jenis pertamanya ditemukan (15760) 1992QB1

F. Pluto dan Charon


Pluto dan ketiga bulannya





Pluto (rata-rata 39 SA), sebuah planet kerdil, adalah obyek terbesar sejauh ini di sabuk Kuiper. Ketika ditemukan tahun 1930, benda ini dianggap sebagai planet yang ke 9, definisi ini diganti pada tahun 2006 dengan diangkatnya definisi formal planet. Pluto memiliki kemiringan orbit cukup eksentrik (170 dari bidang ekliptika) dan berjarak 29,7 SA dari matahari pada titik Prihelion (sejarak orbit Neptunus) sampai 49,5 SA pada titik Aphelion.
Tidak jelas apakah Charon, bulan Pluto yang terbesar, akan terus diklasifikasikan sebagai satelit atau sebuah planet kerdil juga. Pluto dan Charon, keduanya mengedari titik barycenter gravitas di atas permukaanya, yang membuat Pluto-Charon sebuah sistem ganda. 2 bulan yang jauh lebih kecil Nix dan Hydra juga mengedari Pluto dan Charon. Pluto terletak pada sabuk resonan dan memiliki 3:2 resonansi dengan Neptunus, berarti Pluto mengedari matahari 2 kali untuk setiap 3 edaran Neptunus. Obyek sabuk Kuiper yang orbitnya memiliki resonansi yang sama disebut plutinos.

G. Haumea dan Makemake
Haumea (rata-rata 43,34 SA) dan Makemake (rata-rata 45,79 SA) adalah dua obyek terbesar sejauh ini di dalam sabuk Kuiper klasik. Haumea adalah sebuah obyek berbentuk telur dan memiliki dua bulan. Makemake adalah obyek paling cemerlang di sabuk Kuiper setelah Pluto. Pada awalnya dinamai 2003 EL61 dan 2005 FY9, pada tahun 2008 diberi nama dan status sebagai planet kerdil. Orbit keduanya berinklinasi jauh lebih membujur dari Pluto (28° dan 29°) dan lain seperti Pluto, keduanya tidak dipengaruhi oleh Neptunus, sebagai bagian dari kelompok Obyek sabuk Kuiper klasik.

H.Piringan Tersebar









Hitam: tersebar; biru: klasik; hijau: resonan Eris dan satelitnya Dysnomia

Piringan tersebar menindih sabuk Kuiper dan menyebar keluar jauh lebih luas. Daerah ini diduga merupakan sumber komet berperioda pendek. Obyek piringan tersebar diduga terlempar ke orbit yang tidak menentu karena pengaruh gravitasi dari gerakan migrasi awal Neptunus. Kebanyakan Obyek piringan tersebar memiliki perihelion di dalam sabuk Kuiper dan apehelion hampir sejauh 150 SA dari matahari. Orbit OPT juga memiliki inklinasi tinggi pada bidang ekleptika dan sering hampir bersudut siku-siku. Beberapa astronom menggolongkan piringan tersebar hanya sebagai bagian dari sabuk Kuiper dan menjuluki piringan tersebar sebagai Obyek Sabuk Kuiper Tersebar

I. Eris
Eris (rata-rata 68 SA) adalah obyek piringan tersebar terbesar sejauh ini dan menyebabkan mulainya debat tentang definisi planet,karena Eris hanya 5%lebih besar dari Pluto dan memiliki perkiraan diameter sekitar 2400 km. Eris adalah planet kerdil terbesar yang diketahui dan memiliki satu bulan Dysnomia. Seperti Pluto, orbitnya memiliki eksentrisitas tinggi, dengan titik perihelion 38.2 SA (mirip jarak Pluto ke /matahari) dan titik aphelion 97,6 SA dengan bidang ekliptika sangat membujur.

J. Daerah Terjauh
Titik tempat Tata Surya berakhir dan ruang antar bintang mulai tidaklah persis terdefinisi. Batasan-batasan luar ini terbentuk dari dua gaya tekan yang terpisah: angin matahari dan gravitasi matahari. Batasan terjauh pengaruh angin matahari kira kira berjarak empat kali jarak Pluto dan matahari. Heliopause ini disebut sebagai titik permulaan medium antar bintang. Akan tetapi Bola Roche Matahari, jarak efektif pengaruh gravitasi matahari, diperkirakan mencakup sekitar seribu kali lebih jauh.

K. Heliopause


Voyager memasuki heliosheath





Heliopause dibagi menjadi 2 bagian terpisah. Awan angin yang bergerak pada kecepatan 400 km/detik sampai menabrak plasma dari medium ruangantarbintang. Tabrakan ini terjadi pada benturan terminasi yang kira kira terletak di 80-100 SA dari matahari pada daerah lawan angin dan sekitar 200 SA dari matahari pada daerah searah jurusan angin. Kemudian angin melambat dramatis, memampat dan berubah menjadi kencang, membentuk struktur oval yang dikenal sebagai heliosheath, dengan kelakuan mirip seperki ekor komet, mengulur keluar sejauh 40 SA di bagian arah lawan angin dan berkali-kali lipat lebih jauh pada sebelah lainnya. Voyager 1 dan Voyager 2 dilaporkan telah menembus benturan terminasi ini dan memasuki heliosheath, pada jarak 94 dan 84 SA dari matahari. Batasan luar dari heliosfer, heliopause, adalah titik tempat angin matahari berhenti dan ruang antar bintang bermula.
Bentuk dari ujung luar heliosfer kemungkinan dipengaruhi dari dinamika fluida dari interaksi medium antar bintang dan juga medan magnet matahari yang mengarah di sebelah selatan (sehingga memberi bentuk tumpul pada hemisfer utara dengan jarak 9 SA, dan lebih jauh daripada hemisfer selatan. Selebih dari heliopause, pada jarak sekitar 230 SA, terdapat benturan busur, jaluran ombak plasma yang ditinggalkan matahari seiring edarannya berkeliling di Bima Sakti.

L. Awan Oort



Gambaran seorang artis tentang awan oorot




Awan Oort adalah sebuah massa berukuran raksasa yang terdiri dari bertrilion-trillion obyek-obyek es, dipercaya merupakan sumber komet berperioda panjang. Awan ini menyelubungi matahari pada jarak sekitar 50,000 (sekitar 1 tahun cahaya) sampai sejauh 100,000 (1,87 tahun cahaya). Daerah ini dipercaya mengandung komet yang terlempar dari bagian dalam Tata Surya karena interaksi dengan planet-planet bagian luar. Obyek Awan Oort bergerak sangat lambat dan bisa digoncangkan oleh situasi-situasi langka seperti tabrakan, efek gravitasi dari laluan bintang, atau gaya pasang galaksi, gaya pasang yang didorong Bima Sakti.
M. Sedna
Foto teleskop Sedna







90377 Sedna (rata-rata 525,86 SA) adalah sebuah benda kemerahan mirip Pluto dengan orbit raksasa yang sangat eliptis, sekitar 76 SA pada perihelion dan 928 SA pada aphelion dan berjangka orbit 12.050 tahun. Mike Brown, penemu obyek ini pada tahun 2003, menegaskan bahwa Sedna tidak merupakan bagian dari piringan tersebar ataupun sabuk Kuiper karena perihelionnya terlalu jauh untuk dari pengaruh migrasi Neptunus. Dia dan beberapa astronom lainnya berpendapat bahwa Sedna adalah obyek pertama dari sebuah kelompok baru, yang mungkin juga mencakup 2000 CR105. Sebuah benda bertitik perihelion pada 45 SA, aphelion pada 415 SA, dan berjangka orbit 3,420 thaun. Brown menjuluki kelompok ini "Awan Oort bagian dalam", karena mungkin terbentuk melalui process yang mirip, meski jauh lebih dekat ke matahari. Kemungkinan besar Sedna adalah sebuah planet kerdil, meski bentuk kebulatanya masih harus ditentukan dengan pasti.

N. Batasan-Batasan
Medan gravitasi matahari diperkirakan mendominasi gaya gravitasi bintang-bintang sekeliling sejauh dua tahun cahaya (125.000 SA). Perkiraan bawah radius awan Oort, di tangan yang lain, tidak lebih besar dari 50.000 SA. Sekalipun setelah penemuan Sedna, daera antara Sabuk Kuiper dan Awan Oort, sebuah daerah yang memiliki radius puluhan ribu SA, bisa dibilang belum dipetakan. Selain itu juga ada studi yang berjalan mempelajari daerah antara Merkurius dan matahari. Obyek-obyek mungkin masih akan ditemukan di daerah yang belum dipetakan.

O. Dimensi
Perbandingan beberapa ukuran penting planet-planet:

Karakteristik Merkurius Venus Bumi Mars Jupiter Saturnus Uranus Neptunus
Jarak orbit (juta km) (SA) 57,91 (0,39) 108,21 (0,72) 149,60 (1,00) 227,94 (1,52) 778,41 (5,20) 1.426,72 (9,54) 2.870,97 (19,19) 4.498,25 (30,07)
Waktu edaran (tahun) 0,24 (88 hari) 0,62 (224 hari) 1,00 1,88 11,86 29,45 84,02 164,79
Jangka rotasi 58,65 hari 243,02 hari 23 jam 56 menit 24 jam 37 menit 9 jam 55 menit 10 jam 47 menit 17 jam 14 menit 16 jam 7 menit
Eksentrisitas edaran 0,206 0,007 0,017 0,093 0,048 0,054 0,047 0,009
Sudut inklinasi orbit (°) 7,00 3,39 0,00 1,85 1,31 2,48 0,77 1,77
Sudut inklinasi ekuator terhadap orbit (°) 0,00 177,36 23,45 25,19 3,12 26,73 97,86 29,58
Diameter ekuator (km) 4.879 12.104 12.756 6.805 142.984 120.536 51.118 49.528
Massa (dibanding Bumi) 0,06 0,81 1,00 0,15 317,8 95,2 14,5 17,1
Kepadatan menengah (g/cm³) 5,43 5,24 5,52 3,93 1,33 0,69 1,27 1,64
Suhu permukaanmin.menengahmaks. -173 °C+167 °C+427 °C +437 °C+464 °C+497 °C -89 °C+15 °C+58 °C -133 °C-55 °C+27 °C -108 °C -139 °C -197 °C -201 °C

P. Konteks Galaksi










Lokasi Tata Surya di dalam galaksi Bima Sakti Lukisan artist dari Gelembung Lokal

Tata Surya terletak di galaksi Bima Sakti, sebuah galaksi spiral yang berdiameter sekitar 100.000 tahun cahaya dan memiliki sekitar 200 milyar bintang. Matahari berlokasi di salah satu lengan spiral galaksi yang disebut Lengan Orion. Letak Matahari berjarak antara 25,000 dan 28,000 tahun cahaya dari pusat galaksi, dengan kecepatan orbit mengelilingi pusat galaksi sekitar 2200 kilometer per detik. Setiap revolusinya berjangka 225-250 juta tahun. Waktu revolusi ini dikenal sebagai tahun galaksi Tata Surya. Apex matahari, arah jalur matahari di ruang semesta, dekat letaknya dengan konstelasi Herkules terarah pada posisi akhir bintang Vega.
Lokasi Tata Surya di dalam galaksi berperan penting dalam evolusi kehidupan di Bumi. Bentuk orbit bumi adalah mirip lingkaran dengan kecepatan hampir sama dengan lengan spiral galaksi, karenanya bumi sangat jarang menerobos jalur lengan.
Lengan spiral galaksi memiliki konsentrasi supernova tinggi yang berpotensi bahaya sangat besar terhadap kehidupan di Bumi. Situasi ini memberi Bumi jangka stabilitas yang panjang yang memungkinkan evolusi kehidupan. Tata Surya terletak jauh dari daerah padat bintang di pusak galaksi. Di daerah pusat, tarikan gravitasi bintang-bintang yang berdekatan bisa menggoyang benda-benda di Awan Oort dan menembakan komet-komet ke bagian dalam Tata Surya. Dapat menghasilkan potensi tabrakan yang merusak kehidupan di Bumi. Intensitas radiasi dari pusat galaksi mempengaruhi perkembangan bentuk hidup tingkat tinggi.

Q. Daerah Lingkungan Sekitar
Daerah lingkuan terdekat sekitar Tata Surya dinamai Awan Antarbintang Lokal. Daerah ini berawan padat, merupakan bagian daerah diketahui gersang bernama Gelembung Lokal. Daerah Gelembung Lokal berbentuk mirip jam pasir pada medium antarbintang dan berukuran sekitar 300 tahun cahaya. Gelembung ini penuh ditebari plasma bersuhu tinggi yang mungkin berasal dari beberapa supernova yang belum lama terjadi.
Di dalam jarak 10 tahun cahaya (95 triliun km) dari matahari, jumlah bintang relatif sedikit. Bintang yang terdekat adalah sistem kembar 3 Alpha Centauri, yang berjarak 4,4 tahun cahaya. Alpha Centauri A dan B merupakan bintang ganda mirip dengan matahari, sedangkan Centauri C adalah kerdil merah (disebut juga Proxima Centauri) yang mengedari kembaran ganda pertama pada jarak 0,2 tahun cahaya. Bintang-bintang terdekat berikutnya adalah sebuah kerdil merah yang dinamai Bintang Bernad (5,9 tahun cahaya), Wolf 359 (7,8 tahun cahaya) dan Lalande 21185 (8,3 tahun cahaya). Bintang terbesar dalam jarak 10 tahun cahaya adalah Sirius, sebuah bintang cemerlang dikategori 'urutan utama' kira-kira bermassa 2 kali massa matahari, dan dikelilingi oleh sebuah kerdil putih bernama Sirius B. Keduanya berjarak 8,6 tahun cahaya. Sisa sistem selebihnya yang terletak di dalam jarak 10 tahun cahaya adalah sistem bintang ganda kerdil merah Luyten 726-8 (8,7 tahun cahaya) dan sebuah kerdial merah bernama Ross 154 (9,7 tahun cahaya). Bintang tunggal terdekat yang mirip matahari adalah Tau Ceti, yang terletak 11,9 tahun cahaya. Bintang ini kira-kira berukuran 80% berat matahari, tetapi kecemerlangannya (luminositas) hanya 60%. Planet luar Tata Surya terdekat dari matahari, yang diketahui sejauh ini adalah di bintang Epsilon Eridani, sebuah bintang yang sedikit lebih pudar dan lebih merah dibandingkan mathari. Letaknya sekitar 10,5 tahun cahaya. Planet bintang ini yang sudah dipastikan, bernama Epsilon Eridani b, kurang lebih berukuran 1,5 kali massa Yupiter dan mengelilingi induk bintangnya dengan jarak 6,9 tahun cahaya.

2. Bintang
A. Penampakan dan Distribusi
Karena jaraknya yang sangat jauh, semua bintang (kecuali Matahari) hanya tampak sebagai titik saja yang berkelap-kelip karena efek turbulensi atmosfer Bumi. Diameter sudut bintang bernilai sangat kecil ketika diamati menggunakan teleskop optik landas Bumi, hingga diperlukan teleskop interferometer untuk dapat memperoleh citranya. Bintang dengan ukuran diameter sudut terbesar setelah Matahari adalah R Doradus, dengan 0,057 detik busur.







Sebuah katai putih yang sedang mengorbit Sirius (konsep artis). citra NASA.
Telah lama dikira bahwa kebanyakan bintang berada pada sistem bintang ganda atau sistem multi bintang. Kenyataan ini hanya benar untuk bintang-bintang masif kelas O dan B, dimana 80% populasinya dipercaya berada dalam suatu sistem bintang ganda atau pun multi bintang. Semakin redup bintang, semakin besar kemungkinannya dijumpai sebagai sistem tunggal. Dijumpai hanya 25% populasi katai merah yang berada dalam sebuah sistem bintang ganda atau sistem multi bintang. Karena 85% populasi bintang di galaksi Bimasakti adalah katai merah, maka tampaknya kebanyakan bintang di dalam Bimasakti berada pada sistem bintang tunggal.
Astronom memperkirakan terdapat 70 sekstiliun (7×1022) bintang di seluruh alam semesta yang teramati. Ini berarti 70 000 000 000 000 000 000 000 bintang, atau 230 miliar kali banyaknya bintang di galaksi Bimasakti yang berjumlah sekitar 300 miliar.
Bintang terdekat dengan Matahari adalah Proxima Centauri, berjarak 39.9 triliun (1012) kilometer, atau 4.2 tahun cahaya. Cahaya dari Proxima Centauri memakan waktu 4.2 tahun untuk mencapai Bumi. Jarak ini adalah jarak antar bintang tipikal di dalam sebuah piringan galaksi. Bintang-bintang dapat berada pada jarak yang lebih dekat satu sama lain di daerah sekitar pusat galasi dan di dalam gugus bola, atau pada jarak yang lebih jauh di halo galaksi.

B. Evolusi
Struktur, evolusi, dan nasib akhir sebuah bintang sangat dipengaruhi oleh massanya. Selain itu, komposisi kimia juga ikut mengambil peran dalam skala yang lebih kecil.

C. Terbentuknya Bintang
Bintang terbentuk di dalam awan molekul; yaitu sebuah daerah medium antarbintang yang luas dengan kerapatan yang tinggi (meskipun masih kurang rapat jika dibandingkan dengan sebuah vacuum chamber yang ada di Bumi). Awan ini kebanyakan terdiri dari hidrogen dengan sekitar 23–28% helium dan beberapa persen elemen berat. Komposisi elemen dalam awan ini tidak banyak berubah sejak peristiwa nukleosintesis Big Bang pada saat awal alam semesta.
Gravitasi mengambil peranan sangat penting dalam proses pembentukan bintang. Pembentukan bintang dimulai dengan ketidakstabilan gravitasi di dalam awan molekul yang dapat memiliki massa ribuan kali matahari. Ketidakstabilan ini seringkali dipicu oleh gelombang kejut dari supernova atau tumbukan antara dua galaksi. Sekali sebuah wilayah mencapai kerapatan materi yang cukup memenuhi syarat terjadinya instabilitas Jeans, awan tersebut mulai runtuh di bawah gaya gravitasinya sendiri.
Berdasarkan syarat instabilitas Jeans, bintang tidak terbentuk sendiri-sendiri, melainkan dalam kelompok yang berasal dari suatu keruntuhan di suatu awan molekul yang besar, kemudian terpecah menjadi konglomerasi individual. Hal ini didukung oleh pengamatan dimana banyak bintang berusia sama tergabung dalam gugus atau asosiasi bintang.
Begitu awan runtuh, akan terjadi konglomerasi individual dari debu dan gas yang padat yang disebut sebagai globula Bok. Globula Bok ini dapat memiliki massa hingga 50 kali Matahari. Runtuhnya globula membuat bertambahnya kerapatan. Pada proses ini energi gravitasi diubah menjadi energi panas sehingga temperatur meningkat. Ketika awan protobintang ini mencapai kesetimbangan hidrostatik, sebuah protobintang akan terbentuk di intinya. Bintang pra deret utama ini seringkali dikelilingi oleh piringan protoplanet. Pengerutan atau keruntuhan awan molekul ini memakan waktu hingga puluhan juta tahun. Ketika peningkatan temperatur di inti protobintang mencapai kisaran 10 juta kelvin, hidrogen di inti 'terbakar' menjadi helium dalam suatu reaksi termonuklir. Reaksi nuklir di dalam inti bintang menyuplai cukup energi untuk mempertahankan tekanan di pusat sehingga proses pengerutan berhenti. Protobintang kini memulai kehidupan baru sebagai bintang deret utama.

D. Deret Utama
Bintang menghabiskan sekitar 90% umurnya untuk membakar hidrogen dalam reaksi fusi yang menghasilkan helium dengan temperatur dan tekanan yang sangat tinggi di intinya. Pada fase ini bintang dikatakan berada dalam deret utama dan disebut sebagai bintang katai.

E. Akhir Sebuah Bintang
Ketika kandungan hidrogen di teras bintang habis, teras bintang mengecil dan membebaskan banyak panas dan memanaskan lapisan luar bintang. Lapisan luar bintang yang masih banyak hidrogen mengembang dan bertukar warna merah dan disebut bintang raksaksa merah yang dapat mencapai 100 kali ukuran matahari sebelum membentuk bintang kerdil putih. Sekiranya bintang tersebut berukuran lebih besar dari matahari, bintang tersebut akan membentuk superraksaksa merah. Super raksaksa merah ini kemudiannya membentuk Nova atau Supernova dan kemudiannya membentuk bintang neutron atau Lubang hitam.

3. ASTEROID
Asteroid, pernah disebut sebagai planet minor atau planetoid, adalah benda berukuran lebih kecil daripada planet, tetapi lebih besar daripada meteoroid, umumnya terdapat di bagian dalam Tata Surya (lebih dalam dari orbit planet Neptunus). Asteroid berbeda dengan komet dari penampakan visualnya. Komet menampakkan koma ("ekor") sementara asteroid tidak.
A. Asteroid Dalam Sistem Tatasurya


Sabuk asteroid (titik-titik putih). 253 Mathilde, Asteroid tipe C


Dari kiri ke kanan: 4 Vesta, 1 Ceres, Bulan







Asteroid pertama yang ditemukan adalah 1 Ceres, yang ditemukan pada tahun 1801 oleh Giuseppe Piazzi. Kala itu, asteroid disebut sebagai planetoid. Sudah ratusan ribu asteroid di dalam tatasurya kita diketemukan, dan kini penemuan baru itu rata-rata sebanyak 5000 buah per bulannya. Pada 27 Agustus, 2006, dari total 339.376 planet kecil yang terdaftar, 136.563 di antaranya memiliki orbit yang cukup dikenal sehingga bisa diberi nomor resmi yang permanen. Di antara planet-planet tersebut, 13.350 memiliki nama resmi (Trivia: kira-kira 650 di antara nama ini memerlukan tanda pengenal). Nomor terbawah tetapi berupa planet kecil tak bernama yaitu (3360) 1981 VA; planet kecil yang dinamai dengan nomor teratas (kecuali planet katai 136199 Eris serta 134340 Pluto) yaitu 129342 Ependes.
Kini diperkirakan bahwa asteroid yang berdiameter lebih dari 1 km dalam sistem tatasurya berjumlah total antara 1.1 hingga 1.9 juta. Asteroid terluas dalam sistem tatasurya sebelah dalam yaitu 1 Ceres, dengan diameter 900-1000 km. 2 asteroid sabuk sistem tatasurya sebelah dalam yaitu 2 Pallas dan 4 Vesta; keduanya memiliki diameter ~500 km. Vesta merupakan asteroid sabuk paling utama yang kadang-kadnag terlihat oleh mata telanjang (pada beberapa kejadian yang cukup jarang, asteroid yang dekat dengan bumi dapat terlihat tanpa bantuan teknis; lihat 99942 Apophis).
Massa seluruh asteroid Sabuk Utama diperkirakan sekitar 3.0-3.6×1021 kg, atau kurang lebih 4% dari massa bulan. Dari kesemuanya ini, 1 Ceres bermassa 0.95×1021 kg, 32% dari totalnya. Kemudian asteroid terpadat, 4 Vesta (9%), 2 Pallas (7%), dan 10 Hygiea (3%), menjadikan perkiraan ini menjadi 51%; 3 seterusnya, 511 Davida (1.2%), 704 Interamnia (1.0%), dan 3 Juno (0.9%), hanya menambah 3% dari massa totalnya. Jumlah asteroid berikutnya bertambah secara eksponensial walaupun massa masing-masing turun. Dikatakan bahwa asteroid ada juga memiliki sebuah satelit yang bernama Dactyl.

B. Sabuk Asteroid








Sabuk asteroid utama dan asteroid Troya
Asteroid secara umum adalah obyek Tata Surya yang terdiri dari batuan dan mineral logam beku. Sabuk asteroid utama terletak di antara orbit Mars dan Yupiter, berjarak antara 2,3 dan 3,3 SA dari matahari, diduga merupakan sisa dari bahan formasi Tata Surya yang gagal menggumpal karena pengaruh gravitasi Yupiter.
Gradasi ukuran asteroid adalah ratusan kilometer sampai mikroskopis. Semua asteroid, kecuali Ceres yang terbesar, diklasifikasikan sebagai badan Tata Surya kecil. Beberapa asteroid seperti Vesta dan Hygieia mungkin akan diklasifikasi sebagai planet kerdil jika terbukti telah mencapai equilibrium hidrostatik.
Sabuk asteroid terdiri dari beribu-ribu, mungkin jutaan obyek yang berdiameter satu kilometer. Meskipun demikian, massa total dari sabuk utama ini tidaklah lebih dari seperseribu massa bumi. Sabuk utama tidaklah rapat, kapal ruang angkasa secara rutin menerobos daerah ini tanpa mengalami kecelakaan. Asteroid yang berdiameter antara 10 dan 10-4 m disebut meteorid.

C. Ceres








Ceres (2,77 SA) adalah benda terbesar di sabuk asteroid dan diklasifikasikan sebagai planet kerdil. Diameternya adalah sedikit kurang dari 1000 km, cukup besar untuk memiliki gravitasi sendiri untuk menggumpal membentuk bundaran. Ceres dianggap sebagai planet ketika ditemukan pada abad ke 19, tetapi di-reklasifikasi menjadi asteroid pada tahun 1850an setelah observasi lebih lanjut menemukan beberapa asteroid lagi. Ceres direklasifikasi lanjut pada tahun 2006 sebagai planet kerdil.

D. Kelompok Asteroid
Asteroid pada sabuk utama dibagi menjadi kelompok dan keluarga asteroid bedasarkan sifat-sifat orbitnya. Bulan asteroid adalah asteroid yang mengedari asteroid yang lebih besar. Mereka tidak mudah dibedakan dari bulan-bulan planet, kadang kala hampir sebesar pasangannya. Sabuk asteroid juga memiliki komet sabuk utama yang mungkin merupakan sumber air bumi.
Asteroid-asteroid Trojan terletak di titik L4 atau L5 Yupiter (daerah gravitasi stabil yang berada di depan dan belakang sebuah orbit planet), sebutan "trojan" sering digunakan untuk obyek-obyek kecil pada titik langrange dari sebuah planet atau satelit. Kelompok Asteroid Hilda terletak di orbit resonansi 2:3 dari Yupiter, yang artinya kelompok ini mengedari matahari tiga kali untuk setiak dua edaran Yupiter.

4. KOMET








Komet Hale-Bopp
A. Komet
Komet adalah benda angkasa yang mirip asteroid, tetapi hampir seluruhnya terbentuk dari gas (karbon dioksida, metana, air) dan debu yang membeku. Komet memiliki orbit atau lintasan yang berbentuk elips, lebih lonjong dan panjang daripada orbit planet. Komet yang cerah pastinya menarik perhatian ramai.

B. Ciri fisik
Ketika komet menghampiri bagian-dalam Tata Surya, radiasi dari matahari menyebabkan lapisan es terluarnya menguap. Arus debu dan gas yang dihasilkan membentuk suatu atmosfer yang besar tetapi sangat tipis di sekeliling komet, disebut coma. Akibat tekanan radiasi matahari dan angin matahari pada coma ini, terbentuklah ekor raksasa yang menjauhi matahari.
Coma dan ekor komet membalikkan cahaya matahari dan bisa dilihat dari bumi jika komet itu cukup dekat. Ekor komet berbeda-beda bentuk dan ukurannya. Semakin dekat komet tersebut dengan matahari, semakin panjanglah ekornya. Ada juga komet yang tidak berekor.

C. Ciri orbit

Komet mempunyai orbit berbentuk elips.
Perhatikan ia mempunyai dua ekor





Komet bergerak mengelilingi matahari berkali-kali, tetapi peredarannya memakan waktu yang lama. Komet dibedakankan menurut rentangan waktu orbitnya. Rentangan waktu pendek adalah kurang dari 200 tahun dan rentangan waktu yang panjang adalah lebih dari 200 tahun. Secara umumnya bentuk orbit komet adalah elips.

D. Komet Terkenal
Ada beberapa komet yang terkenal, misalnya:
1. Komet Halley, muncul 76 tahun sekali.
2. Komet West
3. Komet Encke, muncul tiga tahun sekali
4. Komet Hyakutake
5. Komet Hale-Bopp

E. Komet Hale-Bopp
Komet adalah badan Tata Surya kecil, biasanya hanya berukuran beberapa kilometer, dan terbuat dari es volatil. Badan-badan ini memiliki eksentrisitas orbit tinggi, secara umum perihelion-nya terletak di planet-planet bagian dalam dan letak aphelion-nya lebih jauh dari Pluto. Saat sebuah komet memasuki Tata Surya bagian dalam, dekatnya jarak dari matahari menyebabkan permukaan esnya bersumblimasi dan berionisasi, yang menghasilkan koma, ekor gas dan debu panjang, yang sering dapat dilihat dengan mata telanjang.
Komet berperioda pendek memiliki kelangsungan orbit kurang dari dua ratus tahun. Sedangkan komet berperioda panjang memiliki orbit yang berlangsung ribuan tahun. Komet berperioda pendek dipercaya berasal dari Sabuk Kuiper, sedangkan komet berperioda panjang, seperti Hale-bopp, berasal dari Awan Oort. Banyak kelompok komet, seperti Kreutz Sungrazers, terbentuk dari pecahan sebuah induk tunggal. Sebagian komet berorbit hiperbolik mungking berasal dari luar Tata Surya, tetapi menentukan jalur orbitnya secara pasti sangatlah sulit. Komet tua yang bahan volatilesnya telah habis karena panas matahari sering dikategorikan sebagai asteroid.

F. CENTAURS
Centaurs adalah benda-benda es mirip komet yang poros semi-majornya lebih besar dari Yupiter (5,5 SA) dan lebih kecil dari Neptunus (30 SA). Centaur terbesar yang diketahui adalah, 10199 Chariklo, berdiameter 250 km. Centaur temuan pertama, 2060 Chiron, juga diklasifikasikan sebagai komet (95P) karena memiliki koma sama seperti komet kalau mendekati matahari. Beberapa astronom mengklasifikasikan Centaurs sebagai obyek sabuk Kuiper sebaran-ke-dalam, seiring dengan sebaran keluar yang bertempat di piringan tersebar (outward-scattered residents of the s

Tidak ada komentar:

Posting Komentar